Cho tứ diện đều \(ABCD\) có cạnh bằng \(4\). Gọi \(M,N,P,Q,R,S\) theo thứ tự là trung điểm các cạnh \(AB,AC,CD,BD,AD,BC\). Thể tích khối bát diện đều \(RMNPQS\) là
Giải chi tiết:

Chia khối bát diện đều \(RMNPQS\) thành hai khối chóp tứ giác đều \(R.MNPQ\) và \(S.MNPQ\) đều có tất cả các cạnh bằng nhau và bằng \(2\).
Ta tính thể tích khối chóp tứ giác đều \(S.MNPQ\) có tất cả các cạnh bằng \(2\).
Gọi \(O\) là giao điểm của \(MP\) và \(NQ\)
\( \Rightarrow OQ = \dfrac{1}{2}NQ = \dfrac{1}{2}.2\sqrt 2 = \sqrt 2 \) \( \Rightarrow SO = \sqrt {S{Q^2} - O{Q^2}} = \sqrt {{2^2} - {{\left( {\sqrt 2 } \right)}^2}} = \sqrt 2 \)
Do đó \({V_{S.MNPQ}} = \dfrac{1}{3}SO.{S_{MNPQ}} = \dfrac{1}{3}.\sqrt 2 {.2^2} = \dfrac{{4\sqrt 2 }}{3}\).
Vậy \({V_{RMNPQS}} = 2{V_{S.MNPQ}} = 2.\dfrac{{4\sqrt 2 }}{3} = \dfrac{{8\sqrt 2 }}{3}\).
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.