Cho tập \(S = \left\{ {1;2;3;...;19;20} \right\}\) gồm 20 số tự nhiên từ 1đến 20. Lấy ngẫu nhiên ba số thuộc \(S\) . Xác suất để ba số lấy được lập thành một cấp số cộng là
Giải chi tiết:
Số phần tử của không gian mẫu là: \(C_{20}^3 = 1140\)
Ba số a, b, c theo thứ tự lập thành CSC khi và chỉ khi \(\dfrac{{a + c}}{2} = b \Rightarrow a + c = 2b\) là số chẵn. Do đó \(a,\,\,c\) cùng chẵn hoặc cùng lẻ.
Như vậy, để ba số lấy được lập thành một cấp số cộng (giả sử 3 số đó là a, b, c (\(a < b < c\))) thì ta chọn trước 2 số a và c cùng chẵn hoặc cùng lẻ.
Ta có \(4 \le a + c \le 38 \Rightarrow 2 \le b \le 19\).
Khi đó, luôn tồn tại duy nhất 1 số b thỏa mãn yêu cầu đề bài.
Số cách chọn bộ số (a, c) như trên là: \(2.C_{10}^2 = 90\)
Xác suất cần tìm là: \(\dfrac{{90}}{{1140}} = \dfrac{3}{{38}}\).
Chọn: C
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.