Cho số phức \(z\) thỏa mãn \(z - \left| z \right| = - 2 - 4i\). Môđun của z là:
Giải chi tiết:
\(\begin{array}{l}z - \left| z \right| = - 2 - 4i \Leftrightarrow z = \left| z \right| - 2 - 4i \Leftrightarrow {\left| z \right|^2} = {\left( {\left| z \right| - 2} \right)^2} + 16\\ \Leftrightarrow {\left| z \right|^2} = {\left| z \right|^2} - 4\left| z \right| + 4 + 16 \Leftrightarrow 4\left| z \right| = 20 \Leftrightarrow \left| z \right| = 5\end{array}\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.