Cho khối tứ diện (ABCD) có thể tích là (V). Gọi (E,,,F,,,G) lần lượt là trung điểm (BC,,,BD,,,CD) và (M,,,N,,,P,,,Q) lần lượt là trọng tâm (Delta ABC,,,Delta ABD,,,Delta ACD,,,Delta BCD). Tính thể tích khối tứ diện (MNPQ) theo (V).
Giải chi tiết:

Ta có: \(\dfrac{{AM}}{{AE}} = \dfrac{{AP}}{{AG}} = \dfrac{{AN}}{{AF}} = \dfrac{2}{3} \Rightarrow MP//EG,\,\,MN//EF\)
\( \Rightarrow \left( {MNP} \right)//\left( {BCD} \right)\).
Ta có \(\dfrac{{MN}}{{EG}} = \dfrac{2}{3} \Rightarrow \dfrac{{MN}}{{BD}} = \dfrac{1}{3}\)
Ta có \(\Delta MNP\) đồng dạng với \(\Delta BCD\) theo tỉ số \(\dfrac{1}{3} \Rightarrow \dfrac{{{S_{\Delta MNP}}}}{{{S_{\Delta BCD}}}} = \dfrac{1}{9}\).
Dựng \(B'C'\) qua M và song song \(BC\). \(C'D'\) qua P và song song với \(CD\).
\( \Rightarrow \left( {MNP} \right) \equiv \left( {B'C'D'} \right)\).

Trong \(\left( {ABG} \right)\) gọi \(I = AQ \cap B'P\). Ta có \(\dfrac{{AB'}}{{AB}} = \dfrac{{AI}}{{AQ}} = \dfrac{{AP}}{{AG}} = \dfrac{2}{3}\).
\(\begin{array}{l}\dfrac{{d\left( {Q;\left( {MNP} \right)} \right)}}{{d\left( {A;\left( {MNP} \right)} \right)}} = \dfrac{{QI}}{{AI}} = \dfrac{1}{2};\,\,\dfrac{{d\left( {A;\left( {MNP} \right)} \right)}}{{d\left( {A;\left( {BCD} \right)} \right)}} = \dfrac{{AB'}}{{AB}} = \dfrac{2}{3}\ \Rightarrow \dfrac{{d\left( {Q;\left( {MNP} \right)} \right)}}{{d\left( {A;\left( {BCD} \right)} \right)}} = \dfrac{1}{2}.\dfrac{2}{3} = \dfrac{1}{3}\end{array}\)
Vậy \(\dfrac{{{V_{MNPQ}}}}{{{V_{ABCD}}}} = \dfrac{1}{3}.\dfrac{1}{9} = \dfrac{1}{{27}} \Rightarrow {V_{MNPQ}} = \dfrac{V}{{27}}\).
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.