[LỜI GIẢI]  Cho khối tứ diện ABCD có AB;AC;AD đôi một vuông góc với nhau và AB = a;AC = 2a;AD = 3a. Các điểm M; - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

 Cho khối tứ diện ABCD có AB;AC;AD đôi một vuông góc với nhau và AB = a;AC = 2a;AD = 3a. Các điểm M;

 Cho khối tứ diện ABCD có AB;AC;AD đôi một vuông góc với nhau và AB = a;AC = 2a;AD = 3a. Các điểm M;

Câu hỏi

Nhận biết

Cho khối tứ diện \(ABCD\) có \(AB,\;AC,\;AD\) đôi một vuông góc với nhau và \(AB = a,\;AC = 2a,\;AD = 3a.\) Các điểm \(M,\;N,\;P\) thứ tự thuộc các cạnh \(AB,\;AC,\;AD\) sao cho \(2AM = MB,\;AN = 2NC,\;AP = PD.\) Tính thể tích khối tứ diện \(AMNP.\)


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Ta có: \({V_{ABCD}} = \dfrac{1}{6}AB.AC.AD = \dfrac{1}{6}.a.2a.3a = {a^3}.\)

Theo đề bài ta có: \(\left\{ \begin{array}{l}2AM = MB\\AN = 2NC\\AP = PD\end{array} \right. \Rightarrow \dfrac{{AM}}{{AB}} = \dfrac{1}{3};\;\dfrac{{AN}}{{AC}} = \dfrac{2}{3};\;\dfrac{{AP}}{{AD}} = \dfrac{1}{2}.\)

Áp dụng công thức tính tỉ lệ thể tích ta có:

\(\dfrac{{{V_{AMNP}}}}{{{V_{ABCD}}}} = \dfrac{{AM}}{{AB}}.\dfrac{{AN}}{{AC}}.\dfrac{{AP}}{{AD}} = \dfrac{1}{3}.\dfrac{2}{3}.\dfrac{1}{2} = \dfrac{1}{9} \Rightarrow {V_{AMNP}} = \dfrac{1}{9}{V_{ABCD}} = \dfrac{{{a^3}}}{9}.\)

Chọn  C.

Ý kiến của bạn