Cho khối lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(2a\) và \(AA' = 3a\) (minh họa như hình vẽ bên). Thể tích của khối lăng trụ đã cho bằng

Giải chi tiết:
Thể tích lăng trụ là \(V = {S_{\Delta ABC}}.AA' = \dfrac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4}.3a = \dfrac{{4{a^2}\sqrt 3 }}{4}.3a = 3\sqrt 3 {a^3}\).
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.