[LỜI GIẢI]  Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và M là điểm thuộc - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

 Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và M là điểm thuộc

 Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và M là điểm thuộc

Câu hỏi

Nhận biết

Cho hình lập phương \(ABCD.A'B'C'D'\) có tâm \(O.\) Gọi \(I\) là tâm của hình vuông \(A'B'C'D'\) và \(M\) là điểm thuộc đoạn thẳng \(OI\) sao cho \(MO=\frac{1}{2}MI\) (tham khảo hình vẽ). Khi đó sin của góc tạo bởi mặt phẳng \(\left( MC'D' \right)\) và \(\left( MAB \right)\) bằng:


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Gọi hình lập phương có cạnh là \(a.\)

Xét hệ trục tọa độ như hình vẽ ta có:

\(\begin{array}{l}
B'\left( {0;\;0;\;0} \right),\;\;A'\left( {a;\;0;\;0} \right),\;C'\left( {0;\;a;\;0} \right),\;D'\left( {a;\;a;\;0} \right),\\
A\left( {a;\;0;\;a} \right),\;I\left( {\frac{a}{2};\;\frac{a}{2};\;0} \right),\;B\left( {0;\;0;\;a} \right),\;O\left( {\frac{a}{2};\;\frac{a}{2};\;\frac{a}{2}} \right).\\
\Rightarrow \overrightarrow {OI} = \left( {0;\;0;\;\frac{a}{2}} \right) \Rightarrow \overrightarrow {OM} = \frac{2}{3}\overrightarrow {OI} = \left( {0;\;0;\;\frac{a}{6}} \right).\\
\Rightarrow \left\{ \begin{array}{l}
{x_M} - {x_O} = 0\\
{y_M} - {y_O} = 0\\
{z_M} - {z_O} = \frac{a}{6}
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
{x_M} = \frac{a}{2}\\
{y_M} = \frac{a}{2}\\
{z_M} = \frac{{2a}}{3}
\end{array} \right. \Rightarrow M\left( {\frac{a}{2};\;\frac{a}{2};\;\frac{{2a}}{3}} \right).
\end{array}\)

\(\begin{align}  & \Rightarrow \overrightarrow{MA}=\left( \frac{a}{2};\ -\frac{a}{2};\ \frac{a}{3} \right),\ \overrightarrow{MB}=\left( -\frac{a}{2};\ -\frac{a}{2};\ \frac{a}{3} \right),\ \overrightarrow{MC'}=\left( -\frac{a}{2};\ \frac{a}{2};-\frac{2a}{3} \right),\ \overrightarrow{MD'}=\left( \frac{a}{2};\ \frac{a}{2};-\frac{2a}{3} \right). \\ & \Rightarrow {{\overrightarrow{n}}_{\left( MAB \right)}}=\left[ \overrightarrow{MA},\ \overrightarrow{MB} \right]=\left( 0;-\frac{{{a}^{2}}}{3};-\frac{{{a}^{2}}}{2} \right)=-{{a}^{2}}\left( 0;\ \frac{1}{3};\ \frac{1}{2} \right). \\ & {{\overrightarrow{n}}_{\left( MC'D' \right)}}=\left[ \overrightarrow{MC'},\ \overrightarrow{MD'} \right]=\left( 0;-\frac{2{{a}^{2}}}{3};-\frac{{{a}^{2}}}{2} \right)=-{{a}^{2}}\left( 0;\ \frac{2}{3};\ \frac{1}{2} \right). \\\end{align}\)

Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( MAB \right)\) và \(\left( M'C'D' \right).\)

\(\begin{align}  & \Rightarrow \cos \alpha =\frac{\left| {{\overrightarrow{n}}_{\left( MAB \right)}}.{{\overrightarrow{n}}_{\left( MC'D' \right)}} \right|}{\left| {{\overrightarrow{n}}_{\left( MAB \right)}} \right|.\left| {{\overrightarrow{n}}_{\left( MC'D' \right)}} \right|}=\frac{\left| \frac{1}{3}.\frac{2}{3}+\frac{1}{2}.\frac{1}{2} \right|}{\sqrt{\frac{1}{9}+\frac{1}{4}}.\sqrt{\frac{4}{9}+\frac{1}{4}}}=\frac{17\sqrt{13}}{65}. \\ & \Rightarrow sin\alpha =\sqrt{1-{{\cos }^{2}}\alpha }=\frac{6\sqrt{13}}{65}. \\\end{align}\)

Chọn D.

Ý kiến của bạn