Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\) cạnh \(a.\) Tính khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {A}'BC \right)\) theo \(a.\)
Giải chi tiết:

.Gọi H là trung điểm của A’B.
Kẻ \(AH\bot {A}'B\,\,\,\left( H\in {A}'B\, \right)\) mà
\(BC\bot \left( A{A}'{B}'B \right)\Rightarrow BC\bot AH\Rightarrow \,\,AH\bot \left( {A}'BC \right).\)
Tam giác \({A}'AB\) cân tại \(A\,\,\Rightarrow \,\,AH=\frac{{A}'B}{2}=\frac{a\sqrt{2}}{2}.\)
Vậy \(d\left( A;\left( {A}'BC \right) \right)=\frac{a\sqrt{2}}{2}.\)
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.