[LỜI GIẢI] Cho hình hộp chữ nhật ABCD.A'B'C'D' có mặt ABCD là hình vuông AA' = AB căn 6 2. Xác định góc giữa h - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình hộp chữ nhật ABCD.A'B'C'D' có mặt ABCD là hình vuông AA' = AB căn 6 2. Xác định góc giữa h

Cho hình hộp chữ nhật ABCD.A'B'C'D' có mặt ABCD là hình vuông AA' = AB căn 6 2. Xác định góc giữa h

Câu hỏi

Nhận biết

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có mặt \(ABCD\) là hình vuông, \(AA' = \frac{{AB\sqrt 6 }}{2}.\) Xác định góc giữa hai mặt phẳng \(\left( {A'BD} \right)\) và \(\left( {C'BD} \right)\).


Đáp án đúng: C

Lời giải của Tự Học 365

Giải chi tiết:

Gọi \(I\) là giao điểm hai đường chéo của hình vuông \(ABCD\). Khi đó \(I\) là trung điểm của \(BD.\)

Xét tam giác \(A'BD\) cân tại \(A' \Rightarrow A'I \bot BD\) và tam giác \(C'BD\) cân tại \(C' \Rightarrow C'I \bot BD\)

Ta có \(\left\{ \begin{array}{l}\left( {A'BD} \right) \cap \left( {C'BD} \right) = BD\\A'I \bot BD\\C'I \bot BD\end{array} \right. \Rightarrow \) góc tạo bởi \(\left( {A'BD} \right)\) và \(\left( {C'BD} \right)\) là góc \(A'IC'.\)

Gọi \(AB = x \Rightarrow AA' = \frac{{AB\sqrt 6 }}{2} = \frac{{x\sqrt 6 }}{2}\)

Xét hình vuông \(ABCD\) có \(AC = BD = x\sqrt 2  \Rightarrow A'C' = x\sqrt 2 ;DI = \frac{{x\sqrt 2 }}{2}\)

Xét tam giác \(AA'D\) vuông tại \(A\) có  \(A'D = \sqrt {A{{A'}^2} + A{D^2}}  = \sqrt {{{\left( {\frac{{x\sqrt 6 }}{2}} \right)}^2} + {x^2}}  = \frac{{x\sqrt {10} }}{2}\)

Xét tam giác \(A'DI\) vuông tại \(I\) có \(A'I = \sqrt {A'{D^2} - D{I^2}}  = \sqrt {{{\left( {\frac{{x\sqrt {10} }}{2}} \right)}^2} - {{\left( {\frac{{x\sqrt 2 }}{2}} \right)}^2}}  = x\sqrt 2 \)

Vì  \(\Delta A'DB = \Delta C'DB\left( {c - c - c} \right) \Rightarrow C'I = A'I = x\sqrt 2 \)

Xét tam giác \(A'IC'\) có  \(A'I = C'I = A'C' = x\sqrt 2 \) nên \(\Delta A'IC'\) là tam giác đều. Suy ra \(\angle A'IC' = {60^0}.\)

Vậy góc tạo bởi \(\left( {A'BD} \right)\) và  \(\left( {C'BD} \right)\) là góc \(A'IC'\) bằng \({60^0}.\)

Chọn C.

Ý kiến của bạn