Cho hình chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên \(SA\) vuông góc với mặt phẳng đáy và \(SA = \sqrt 2 a\). Tính thể tích \(V\) của khối chóp \(S.ABCD\).
Giải chi tiết:

Ta có \({S_{ABCD}} = a.a = {a^2}\).
\({V_{S.ABCD}} = \dfrac{1}{3}SA.{S_{ABCD}} = \dfrac{1}{3}.a\sqrt 2 .{a^2} = \dfrac{{{a^3}\sqrt 2 }}{3}\).
Chọn D
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.