Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\), cạnh bên bằng \(\sqrt 2 a\). Độ lớn của góc giữa đường thẳng \(SA\) và mặt phẳng đáy bằng:
Giải chi tiết:

Gọi O là tâm của hình vuông ABCD. Do S.ABCD là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right)\)
\( \Rightarrow \widehat {\left( {SA;\left( {ABCD} \right)} \right)} = \widehat {\left( {SA;OA} \right)} = \widehat {SAO}\)
ABCD là hình vuông cạnh a \( \Rightarrow AC = a\sqrt 2 \Rightarrow OA = \dfrac{{a\sqrt 2 }}{2}\)
\(\Delta SAO\) vuông tại O \( \Rightarrow \cos \widehat {SAO} = \dfrac{{OA}}{{SA}} = \dfrac{{\dfrac{{a\sqrt 2 }}{2}}}{{a\sqrt 2 }} = \dfrac{1}{2} \Rightarrow \widehat {SAO} = {60^0}\)\( \Rightarrow \left( {\widehat {SA;\left( {ABCD} \right)}} \right) = {60^0}\).
Chọn: D
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.