Ôn đúng trọng tâm – Học chắc từ hôm nay
Hệ thống lại kiến thức lớp 10–11–12
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(2a\), cạnh bên bằng \(3a\). Tính thể tích \(V\) của khối chóp đã cho.
Giải chi tiết:

Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).
Khi đó ta có \(AO = \dfrac{{AC}}{2} = \dfrac{{2a\sqrt 2 }}{2} = a\sqrt 2 \)
Xét tam giác \(SAO\) vuông tại \(O\) có \(AO = a\sqrt 2 ;\,\,\,SA = 3a.\)
Áp dụng định lí Pytago ta có: \(SO = \sqrt {S{A^2} - A{O^2}} \)\( = \sqrt {{{\left( {3a} \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}} \) \( = a\sqrt 7 \).
Diện tích hình vuông \(ABCD\) là \({S_{ABCD}} = {\left( {2a} \right)^2} = 4{a^2}\).
Vậy \({V_{S.ABCD}} = \dfrac{1}{3}.SO.{S_{ABCD}} = \dfrac{1}{3}.a\sqrt 7 .4{a^2} = \dfrac{{4\sqrt 7 {a^3}}}{3}.\)
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.