Ôn đúng trọng tâm – Học chắc từ hôm nay
Hệ thống lại kiến thức lớp 10–11–12
Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(a\), cạnh bên bằng \(2a\). Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( SBC \right)\) bằng
Giải chi tiết:

Gọi \(O\) là tâm đường tròn ngoại tiếp \(\Delta \,ABC\Rightarrow \,\,SO\bot \left( ABC \right)\).
Gọi \(M\) là trung điểm của \(BC\Rightarrow \,\,OM\bot BC,\) kẻ \(OH\bot SM\,\,\,\,\,\,\left( H\in SM \right).\)
Suy ra \(OH\bot \left( SBC \right)\Rightarrow \,\,d\left( O;\left( SBC \right) \right)=OH.\)
Ta có : \(\frac{AM}{OM}=3\Rightarrow d\left( A,\ \left( SBC \right) \right)=3d\left( O;\ \left( SBC \right) \right)\Rightarrow \,\,d\left( A;\left( SBC \right) \right)=3\,\,\times \,\,OH.\)
Tam giác \(SBM\) vuông tại \(M,\) có \(SM=\sqrt{S{{B}^{2}}-B{{M}^{2}}}=\frac{a\sqrt{15}}{2}.\) Có : \(AM=\frac{a\sqrt{3}}{2}\Rightarrow OM=\frac{1}{3}AM=\frac{a\sqrt{3}}{6}.\)
Tam giác \(SOM\) vuông tại \(M,\) có : \(SO=\sqrt{S{{M}^{2}}-O{{M}^{2}}}=\sqrt{{{\left( \frac{a\sqrt{15}}{2} \right)}^{2}}-{{\left( \frac{a\sqrt{3}}{6} \right)}^{2}}}=\frac{a\sqrt{33}}{3}.\)
Khi đó \(\frac{1}{O{{H}^{2}}}=\frac{1}{S{{O}^{2}}}+\frac{1}{O{{M}^{2}}}=\frac{1}{{{\left( \frac{a\sqrt{33}}{3} \right)}^{2}}}+\frac{1}{{{\left( \frac{a\sqrt{3}}{6} \right)}^{2}}}=\frac{135}{11{{a}^{2}}}\Rightarrow \,\,OH=\frac{a\sqrt{165}}{45}.\)
Vậy khoảng cách cần tính là \(d\left( A;\left( SBC \right) \right)=3\,\,\times \,\,OH=\frac{a\sqrt{165}}{15}.\)
Chọn C
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.