Cho hình chóp tam giác đều \(S.ABC\). Biết \(SA = a\) và \(\widehat {ASB} = {90^0}\). Tính theo \(a\) bán kính \(R\) của mặt cầu ngoại tiếp hình chóp \(S.ABC\).
Giải chi tiết:

\( + )\)Xét \(\Delta SAB\)có: \(\left\{ \begin{array}{l}\widehat S = {90^0}\\SA = SB\end{array} \right. \Rightarrow \Delta SAB\)vuông cân tại \(S\).
\( \Rightarrow AB = \sqrt {S{A^2} + S{B^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
\( + )\) Lại có \(\Delta ABC\)đều \( \Rightarrow AG = \dfrac{2}{3}AH = \dfrac{2}{3}.\dfrac{{a\sqrt 2 .\sqrt 3 }}{2} = \dfrac{{a\sqrt 6 }}{3}\).
\( + )\)Xét \(\Delta SAG\)vuông tại \(G\): \(S{G^2} + A{G^2} = S{A^2}\)
\( \Rightarrow SG = \sqrt {{a^2} - {{\left( {\dfrac{{a\sqrt 6 }}{3}} \right)}^2}} = \dfrac{{a\sqrt 3 }}{3}\)
\( \Rightarrow {R_{mcnt}} = \dfrac{{S{A^2}}}{{2.SG}} = \dfrac{{{a^2}}}{{2.\dfrac{{a\sqrt 3 }}{3}}} = \dfrac{{a\sqrt 3 }}{2}\)
Chọn A
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.