[LỜI GIẢI] Cho hình chóp S.ABCD có đáy (ABCD) là nửa lục giác đều nội - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình chóp S.ABCD có đáy (ABCD) là nửa lục giác đều nội

Cho hình chóp S.ABCD có đáy (ABCD) là nửa lục giác đều nội

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy \(ABCD\) là nửa lục giác đều nội tiếp đường tròn đường kính \(AB = 2a,SA = a\sqrt 3 \) và vuông góc với mặt phẳng ABCD. Cosin góc giữa hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là:


Đáp án đúng: C

Lời giải của Tự Học 365

Cách giải nhanh bài tập này

Gọi \(E = AD \cap BC\)
Vì ABCD là nửa lục giác đều nội tiếp đường tròn đường kính AB
nên \(\widehat {ADB} = {90^0} \Rightarrow AD \bot DB\)
Mà \(SA \bot DB\)
\( \Rightarrow DB \bot \left( {SAD} \right) \Rightarrow DB \bot SE\)
Trong \(\left( {SAE} \right)\) kẻ \(DF \bot SE\)
\( \Rightarrow SE \bot \left( {BDF} \right) \Rightarrow SE \bot BF\)
Ta có: \(\left. \begin{array}{l}\left( {SAD} \right) \cap \left( {SBC} \right) = SE\\DF \bot SE\\BF \bot SE\end{array} \right\} \Rightarrow \widehat {\left( {\left( {SAD} \right);\left( {SBC} \right)} \right)} = \widehat {\left( {DF;BF} \right)} = \widehat {BFD}\)

(vì \(\widehat {BFD} < {90^0}\))

Vì \(DB \bot \left( {SAD} \right) \Rightarrow DB \bot DF \Rightarrow \Delta BDF\)vuông tại D

Xét tam giác vuông ABD có: \(BD = \sqrt {A{B^2} - A{D^2}}  = \sqrt {4{a^2} - {a^2}}  = a\sqrt 3 \)

\(\Delta EAB\) đều nên \(AE = BE = AB = 2a \Rightarrow SE = \sqrt {S{A^2} + A{E^2}}  = \sqrt {3{a^2} + 4{a^2}}  = a\sqrt 7 \)

D là trung điểm của AE nên \(AD = \frac{1}{2}AE = a\)

Ta có: \(\Delta EDF \sim \Delta ESA\left( {g.g} \right) \Rightarrow \dfrac{{DF}}{{SA}} = \dfrac{{DE}}{{SE}} \Rightarrow DF = \dfrac{{SA.DE}}{{SE}} = \dfrac{{a\sqrt 3 .a}}{{a\sqrt 7 }} = \dfrac{{a\sqrt 3 }}{{\sqrt 7 }}\)

\( \Rightarrow BF = \sqrt {D{F^2} + B{D^2}}  = \sqrt {\dfrac{3}{7}{a^2} + 3{a^2} = } \dfrac{{2\sqrt 6 a}}{{\sqrt 7 }}\)

Vậy \(cos\widehat {BFD} = \dfrac{{DF}}{{BF}} = \dfrac{{\dfrac{{a\sqrt 3 }}{{\sqrt 7 }}}}{{\dfrac{{2\sqrt 6 a}}{{\sqrt 7 }}}} = \dfrac{{\sqrt 2 }}{4}\)

Chọn C.

Ý kiến của bạn