Ôn đúng trọng tâm – Học chắc từ hôm nay
Hệ thống lại kiến thức lớp 10–11–12
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông. Mặt bên \(SAB\) là tam giác đều cạnh \(a\) và nằm trong mặt phẳng vuông góc với \(\left( {ABCD} \right)\). Tính thể tích của khối chóp \(S.ABCD\).
Giải chi tiết:

Gọi \(H\) là trung điểm của \(AB \Rightarrow SH \bot AB\) (do \(\Delta SAB\) đều).
Ta có: \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\\left( {SAB} \right) \supset SH \bot AB\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\).
Tam giác \(SAB\) đều cạnh \(a \Rightarrow AB = a\) và \(SH = \frac{{a\sqrt 3 }}{2}\).
\(AB = a \Rightarrow ABCD\) là hình vuông cạnh \(a \Rightarrow {S_{ABCD}} = {a^2}\).
Vậy \({V_{S.ABCD}} = \frac{1}{3}SH.{S_{ABCD}} = \frac{1}{3}\frac{{a\sqrt 3 }}{2}.{a^2} = \frac{{{a^3}\sqrt 3 }}{6}\).
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.