Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của SD. Tính khoảng cách giữa hai đường thẳng AM và SC ?
Giải chi tiết:

Gọi H là trung điểm của AB ta có:
\(SH \bot AB \Rightarrow SH \bot \left( {ABCD} \right)\)
Gọi N là trung điểm của CD
\(\begin{array}{l} \Rightarrow MN//SC \Rightarrow d\left( {AM;SC} \right) = d\left( {SC;\left( {AMN} \right)} \right) = d\left( {S;\left( {AMN} \right)} \right)\\ = d\left( {D;\left( {AMN} \right)} \right)\end{array}\)
Ta có \(\left\{ \begin{array}{l}AD \bot SH\\AD \bot AB\end{array} \right. \Rightarrow AD \bot \left( {SAB} \right) \Rightarrow AD \bot SA \Rightarrow \Delta SAD\) vuông tại A \( \Rightarrow AM = \frac{1}{2}SD = \frac{{a\sqrt 2 }}{2}\).
Tương tự ta chứng minh được tam giác SBC vuông cân tại B.
Có \(MN = \frac{1}{2}SC = \frac{{a\sqrt 2 }}{2};\,\,AN = \sqrt {A{D^2} + D{N^2}} = \frac{{a\sqrt 5 }}{2}\)
\(\begin{array}{l} \Rightarrow {p_{AMN}} = \frac{{\frac{{a\sqrt 2 }}{2} + \frac{{a\sqrt 2 }}{2} + \frac{{a\sqrt 5 }}{2}}}{2} = \frac{{2a\sqrt 2 + a\sqrt 5 }}{4}\\ \Rightarrow {S_{AMN}} = \sqrt {{p_{AMN}}\left( {{p_{AMN}} - AM} \right)\left( {{p_{AMN}} - MN} \right)\left( {{p_{AMN}} - NP} \right)} = \frac{{{a^2}\sqrt {15} }}{{16}}\end{array}\)
Ta có \(\frac{{{V_{M.AND}}}}{{{V_{S.ABCD}}}} = \frac{1}{2}.\frac{1}{4} = \frac{1}{8} \Rightarrow {V_{M.AND}} = \frac{{{V_{S.ABCD}}}}{8}\)
Có \(SH = \frac{{a\sqrt 3 }}{2} \Rightarrow {V_{S.ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{2}.{a^2} = \frac{{{a^3}\sqrt 3 }}{6} \Rightarrow {V_{M.AND}} = \frac{{{a^3}\sqrt 3 }}{{48}}\)
Lại có \({V_{M.AND}} = \frac{1}{3}{S_{AMN}}.d\left( {D;\left( {AMN} \right)} \right) \Rightarrow d\left( {D;\left( {AMN} \right)} \right) = \frac{{3{V_{M.AND}}}}{{{S_{AMN}}}} = \frac{{a\sqrt 5 }}{5}\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.