[LỜI GIẢI] Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của SD. Tính khoảng cách giữa hai đường thẳng AM và SC ?


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

 

Gọi H là trung điểm của AB ta có:

\(SH \bot AB \Rightarrow SH \bot \left( {ABCD} \right)\)

Gọi N là trung điểm của CD

\(\begin{array}{l} \Rightarrow MN//SC \Rightarrow d\left( {AM;SC} \right) = d\left( {SC;\left( {AMN} \right)} \right) = d\left( {S;\left( {AMN} \right)} \right)\\ = d\left( {D;\left( {AMN} \right)} \right)\end{array}\)

Ta có \(\left\{ \begin{array}{l}AD \bot SH\\AD \bot AB\end{array} \right. \Rightarrow AD \bot \left( {SAB} \right) \Rightarrow AD \bot SA \Rightarrow \Delta SAD\) vuông tại A \( \Rightarrow AM = \frac{1}{2}SD = \frac{{a\sqrt 2 }}{2}\).

Tương tự ta chứng minh được tam giác SBC vuông cân tại B.

Có \(MN = \frac{1}{2}SC = \frac{{a\sqrt 2 }}{2};\,\,AN = \sqrt {A{D^2} + D{N^2}}  = \frac{{a\sqrt 5 }}{2}\)

\(\begin{array}{l} \Rightarrow {p_{AMN}} = \frac{{\frac{{a\sqrt 2 }}{2} + \frac{{a\sqrt 2 }}{2} + \frac{{a\sqrt 5 }}{2}}}{2} = \frac{{2a\sqrt 2  + a\sqrt 5 }}{4}\\ \Rightarrow {S_{AMN}} = \sqrt {{p_{AMN}}\left( {{p_{AMN}} - AM} \right)\left( {{p_{AMN}} - MN} \right)\left( {{p_{AMN}} - NP} \right)}  = \frac{{{a^2}\sqrt {15} }}{{16}}\end{array}\)

Ta có \(\frac{{{V_{M.AND}}}}{{{V_{S.ABCD}}}} = \frac{1}{2}.\frac{1}{4} = \frac{1}{8} \Rightarrow {V_{M.AND}} = \frac{{{V_{S.ABCD}}}}{8}\)

Có \(SH = \frac{{a\sqrt 3 }}{2} \Rightarrow {V_{S.ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{2}.{a^2} = \frac{{{a^3}\sqrt 3 }}{6} \Rightarrow {V_{M.AND}} = \frac{{{a^3}\sqrt 3 }}{{48}}\)

Lại có \({V_{M.AND}} = \frac{1}{3}{S_{AMN}}.d\left( {D;\left( {AMN} \right)} \right) \Rightarrow d\left( {D;\left( {AMN} \right)} \right) = \frac{{3{V_{M.AND}}}}{{{S_{AMN}}}} = \frac{{a\sqrt 5 }}{5}\)

Chọn B.  

Ý kiến của bạn