Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB=2a,BC=a\). Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.
Giải chi tiết:

\(HC=\sqrt{B{{H}^{2}}+B{{C}^{2}}}=\sqrt{{{a}^{2}}+{{a}^{2}}}=a\sqrt{2}\)
Ta có \(\left( SC;\left( ABCD \right) \right)=\left( SC;HC \right)=\widehat{SCH}={{60}^{0}}\)
Xét tam giác vuông SHC có \(SH=HC.\tan 60=a\sqrt{2}.\sqrt{3}=a\sqrt{6}\)
Ta có:
\(\begin{align} AC=\sqrt{A{{B}^{2}}+B{{C}^{2}}}=\sqrt{4{{a}^{2}}+{{a}^{2}}}=a\sqrt{5} \\ SB=\sqrt{S{{H}^{2}}+H{{B}^{2}}}=\sqrt{6{{a}^{2}}+{{a}^{2}}}=a\sqrt{7} \\ \end{align}\)
Ta có:
\(\begin{align} \overrightarrow{SB}.\overrightarrow{AC}=\left( \overrightarrow{SH}+\overrightarrow{HB} \right).\overrightarrow{AC}=\underbrace{\overrightarrow{SH}.\overrightarrow{AC}}_{\overrightarrow{0}}+\overrightarrow{HB}.\overrightarrow{AC}=\overrightarrow{HB}.\overrightarrow{AC} \\ \Rightarrow \overrightarrow{SB}.\overrightarrow{AC}=HB.AC.\cos \left( HB;AC \right)=HB.AC.\cos \widehat{BAC}=HB.AC.\frac{AB}{AC}=a.2a=2{{a}^{2}} \\ \end{align}\)
Lại có \(\overrightarrow{SB}.\overrightarrow{AC}=SB.AC.\cos \left( SB;AC \right)\Rightarrow \cos \left( SB;AC \right)=\frac{\overrightarrow{SB}.\overrightarrow{AC}}{SB.AC}=\frac{2{{a}^{2}}}{a\sqrt{7}.a\sqrt{5}}=\frac{2}{\sqrt{35}}\)
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.