Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\) là điểm đối xứng của \(C\) qua \(B\) và \(N\) là trung điểm của \(SC\). Mặt phẳng \(\left( {MND} \right)\) chia khối chóp \(S.ABCD\) thành hai khối đa diện, trong đó khối đa diện chứa đỉnh \(S\) có thể tích \({V_1}\), khối đa diện còn lại có thể tích \({V_2}\) (tham khảo hình vẽ dưới đây. Tính tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\).
Giải chi tiết:
Gọi \(V\) là thể tích khối chóp \(S.ABCD\).
Có \(BP//DC\) \( \Rightarrow \dfrac{{BP}}{{DC}} = \dfrac{{MP}}{{MD}} = \dfrac{{MB}}{{MC}} = \dfrac{1}{2} \Rightarrow \dfrac{{BP}}{{AB}} = \dfrac{1}{2}\) \( \Rightarrow P\) là trung điểm của \(AB\)
Ta có : \(\Delta MBP = \Delta DAP\,\,\left( {c.g.c} \right) \Rightarrow {S_{\Delta MBP}} = {S_{\Delta DAP}}\)
\( \Rightarrow {S_{\Delta MBP}} + {S_{BCDP}} = {S_{\Delta DAP}} + {S_{BCDP}} \Rightarrow {S_{MCD}} = {S_{ABCD}}\)
Mà \(\dfrac{{d\left( {N,\left( {MCD} \right)} \right)}}{{d\left( {S,\left( {ABCD} \right)} \right)}} = \dfrac{{NC}}{{SC}} = \dfrac{1}{2}\)
\( \Rightarrow \dfrac{{{V_{N.MCD}}}}{{{V_{S.ABCD}}}} = \dfrac{{\dfrac{1}{3}{S_{MCD}}.d\left( {N,\left( {MCD} \right)} \right)}}{{\dfrac{1}{3}{S_{ABCD}}.d\left( {S,\left( {ABCD} \right)} \right)}} = \dfrac{1}{2} \Rightarrow {V_{N.MCD}} = \dfrac{1}{2}{V_{S.ABCD}} = \dfrac{V}{2}.\)
Xét tam giác \(MNC\), áp dụng định lý Menelaus cho bộ ba điểm thẳng hàng \(B,Q,S\) ta có :
\(\dfrac{{BM}}{{BC}}.\dfrac{{SC}}{{SN}}.\dfrac{{QN}}{{QM}} = 1 \Leftrightarrow 1.2.\dfrac{{QN}}{{QM}} = 1 \Leftrightarrow \dfrac{{QN}}{{QM}} = \dfrac{1}{2}\) \( \Rightarrow \dfrac{{MQ}}{{MN}} = \dfrac{2}{3}\)
\(\begin{array}{l} \Rightarrow \dfrac{{{V_{M.PBQ}}}}{{{V_{M.NCD}}}} = \dfrac{{MB}}{{MC}}.\dfrac{{MP}}{{MD}}.\dfrac{{MQ}}{{MN}} = \dfrac{1}{2}.\dfrac{1}{2}.\dfrac{2}{3} = \dfrac{1}{6}\\ \Rightarrow {V_{M.PBQ}} = \dfrac{1}{6}{V_{M.NCD}} = \dfrac{1}{6}.\dfrac{V}{2} = \dfrac{V}{{12}}\\ \Rightarrow {V_{BPQ.CDN}} = {V_{M.CDN}} - {V_{M.BPQ}} = \dfrac{V}{2} - \dfrac{V}{{12}} = \dfrac{{5V}}{{12}}\\ \Rightarrow {V_2} = \dfrac{{5V}}{{12}} \Rightarrow {V_1} = V - \dfrac{{5V}}{{12}} = \dfrac{{7V}}{{12}} \Rightarrow \dfrac{{{V_1}}}{{{V_2}}} = \dfrac{7}{5}.\end{array}\)
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.