Cho hình chóp \(S.ABC \). Gọi \(M,N,P \) lần lượt là trung điểm của \(SA,SB,SC \). Tỉ số thể tích \( \dfrac{{{V_{S.ABC}}}}{{{V_{S.MNP}}}} \) bằng:
Giải chi tiết:
\(\dfrac{{{V_{S.ABC}}}}{{{V_{S.MNP}}}} = \dfrac{{SA}}{{SM}}.\dfrac{{SB}}{{SN}}.\dfrac{{SC}}{{SP}} = 2.2.2 = 8.\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.