Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy ABC là tam giác vuông tại B, AB = a, SA = a. Gọi H là hình chiếu của A trên SB. Khoảng cách giữa AH và BC bằng?
Giải chi tiết:
Ta có:
\(\left\{ \begin{array}{l}
BC \bot AB\\
BC \bot SA
\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot HB\)
Mà \(AH \bot HB \Rightarrow HB\) là đoạn vuông góc chung của AH và BC. Suy ra \(d(AH,\,BC) = HB\)
Tam giác SAB vuông cân tại A, có \(SA = AB = a,\,\,AH \bot SC\)\( \Rightarrow HB = \dfrac{1}{2}SB = \dfrac{1}{2}a\sqrt 2 = \dfrac{{a\sqrt 2 }}{2}\)
Chọn: C.