[LỜI GIẢI] Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc

Câu hỏi

Nhận biết

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc với mặt phẳng (ABC). Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là:


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

Gọi I, J, O lần lượt là trung điểm của AC, SA, SC.

+) Ta sẽ chứng minh: O là tâm mặt cầu ngoại tiếp hình chóp S.ABC:

Ta có: \(\Delta \)ABC vuông tại B, I là trung điểm AC \(\Rightarrow \) I là tâm đường tròn ngoại tiếp tam giác ABC      (1)

OI // SA ( Vì IO là đường trung bình của tam giác SAC)

Mà \(SA\bot (ABC)\Rightarrow IO\bot (ABC)\)    (2)

Từ (1), (2) suy ra : \(OA=OB=OC\)   (*)

Ta có:  \(OJ//AC\) ( Vì OJ là đường trung bình của tam giác SAC)

Mà \(AC\bot SA\,\,(do\,\,SA\bot (ABC))\Rightarrow OJ\bot SA\Rightarrow \) OJ là đường trung trực của SA \(\Rightarrow OS=OA\)   (2*)

Từ (*) và (2*) suy ra \(OS=OA=OB=OC\Rightarrow O\) là tâm mặt cầu ngoại tiếp hình chóp S.ABC.

+) Tính bán kính R:

\(\Delta \)ABC vuông tại B\(\Rightarrow A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}={{a}^{2}}+{{a}^{2}}=2{{a}^{2}}\Rightarrow AC=a\sqrt{2}\).

 \(\Delta \)SAC vuông tại S \(\Rightarrow S{{C}^{2}}=S{{A}^{2}}+A{{C}^{2}}={{\left( 2a \right)}^{2}}+{{\left( a\sqrt{2} \right)}^{2}}=6{{a}^{2}}\Rightarrow SC=a\sqrt{6}\Rightarrow R=\frac{SC}{2}=\frac{a\sqrt{6}}{2}\).

Chọn: B

Ý kiến của bạn