Cho hình chóp đều S.ABCD, \(SA=2a;\,\,AB=a\). Tính \(d\left( S;\left( ABCD \right) \right)\).
Giải chi tiết:

* Nối \(AC\cap BD=O\Rightarrow O\) là tâm đáy \(\Rightarrow SO\bot \left( ABCD \right)\).
\(\Rightarrow d\left( S;\left( ABCD \right) \right)=SO\).
* Tính SO : \(BD=a\sqrt{2}\Rightarrow OB=\frac{a\sqrt{2}}{2}\)
\({{\Delta }_{v}}SOB:\,\,SO=\sqrt{S{{B}^{2}}-O{{B}^{2}}}=\sqrt{4{{a}^{2}}-\frac{2{{a}^{2}}}{4}}=\frac{a\sqrt{14}}{2}\)
Chọn đáp án D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.