[LỜI GIẢI]  Cho hình chóp đều S.ABCD có cạnh đáy bằng a và cạnh bên tạo với mặt đáy một góc 60o. Tính thể tích - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và cạnh bên tạo với mặt đáy một góc 60o. Tính thể tích

 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và cạnh bên tạo với mặt đáy một góc 60o. Tính thể tích

Câu hỏi

Nhận biết

Cho hình chóp đều S.ABCD có cạnh đáy bằng \(a\) và cạnh bên tạo với mặt đáy một góc 60o. Tính thể tích của khối chóp S.ABCD ?


Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

 

 

Gọi O là tâm của hình vuông ABCD \( \Rightarrow SO \bot \left( {ABCD} \right)\)\( \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;OC} \right)} = \widehat {SCO} = {60^0}\)

\(ABCD\) là hình vuông cạnh a \( \Rightarrow \left\{ \begin{array}{l}AC = a\sqrt 2  \Rightarrow OC = \dfrac{a}{{\sqrt 2 }}\\{S_{ABCD}} = {a^2}\end{array} \right.\)

\(\Delta SOC\) vuông tại O \( \Rightarrow SO = OC.\tan \widehat {SCO} = \dfrac{a}{{\sqrt 2 }}.\tan {60^0} = \dfrac{{a\sqrt 3 }}{{\sqrt 2 }}\)

Thể tích khối chóp S.ABCD là: \(V = \dfrac{1}{3}{S_{ABCD}}.SO = \dfrac{1}{3}.{a^2}.\dfrac{{a\sqrt 3 }}{{\sqrt 2 }} = \dfrac{{{a^3}\sqrt 6 }}{6}\).

Chọn: D

Ý kiến của bạn