[LỜI GIẢI] Cho hàm số y=f(x) xác định liên tục và có đạo hàm trên đoạn [ a;b ]. Xét các khẳng định sau: 1.Hàm - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hàm số y=f(x) xác định liên tục và có đạo hàm trên đoạn [ a;b ]. Xét các khẳng định sau: 1.Hàm

Cho hàm số y=f(x) xác định liên tục và có đạo hàm trên đoạn [ a;b ]. Xét các khẳng định sau: 
1.Hàm

Câu hỏi

Nhận biết

Cho hàm số \(y=f(x)\) xác định, liên tục và có đạo hàm trên đoạn \(\left[ a;b \right]\). Xét các khẳng định sau:

1.Hàm số f(x) đồng biến trên \((a;b)\) thì \(f'(x)>0,\forall x\in \left( a;b \right)\)

2.Giả sử \(f\left( a \right)>f\left( c \right)>f\left( b \right),\forall c\in \left( a,b \right)\) suy ra hàm số nghịch biến trên \(\left( a;b \right)\)

3. Giả sử phương trình \(f'(x)=0\) có nghiệm là \(x=m\) khi đó nếu hàm số \(f(x)\) đồng biến trên \(\left( m,b \right)\) thì hàm số f(x) nghịch biến trên \(\left( a,m \right).\)

4. Nếu \(f'(x)\ge 0,\forall x\in \left( a,b \right)\), thì hàm số đồng biến trên \(\left( a,b \right)\)

Số khẳng định đúng trong các khẳng định trên là


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

*2 sai vì với \({{c}_{1}}<{{c}_{2}}\) bất kỳ nằm trong \(\left( a,b \right)\) ta chưa thể so sánh được \(f\left( {{c}_{1}} \right)\) và \(f\left( {{c}_{2}} \right)\).

*3 sai. Vì \(y'\) bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số \(y={{x}^{3}}.\)

*4 sai: Vì thiếu điều kiện \(f'\left( x \right)=0\) tại hữu hạn điểm.VD hàm số y = 1999 có \(y'=0\ge 0\) nhưng là hàm hằng.

Đáp án A.

Ý kiến của bạn