Cho hàm số \(y=f\left( x \right)\) liên tục trên R và thỏa mãn \(\int\limits_{{}}^{{}}{f\left( x \right)dx}=4{{x}^{3}}-3{{x}^{2}}+2x+C\). Hàm số \(f\left( x \right)\) là hàm số nào trong các hàm số sau?
Giải chi tiết:
\(f\left( x \right)=\left( \int\limits_{{}}^{{}}{f\left( x \right)dx} \right)'=12{{x}^{2}}-6x+2\)
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.