Cho hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ -2;\ 4 \right]\) và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình \(3f\left( x \right)-5=0\) trên đoạn \(\left[ -2;\ 4 \right]\) là:
Giải chi tiết:

Ta có: \(3f\left( x \right)-5=0\Leftrightarrow f\left( x \right)=\frac{5}{3}.\)
Số nghiệm của phương trình \(f\left( x \right)=\frac{5}{3}\) là số nghiệm của đồ thị hàm số
\(y=f\left( x \right)\) và đường thẳng \(y=\frac{5}{3}.\)
Dựa vào đồ thị hàm số ta thấy đường thẳng \(y=\frac{5}{3}\) cắt đồ thị hàm số \(y=f\left( x \right)\) tại \(3\) điểm phân biệt.
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.