Cho hàm số \(y=f\left( x \right).\) Biết hàm số \(y=f'\left( x \right)\) có đồ thị như hình vẽ bên dưới. Hàm số \(y=f\left( 3-{{x}^{2}} \right)\) đồng biến trên khoảng

Giải chi tiết:
Ta có
\(\left[ f\left( 3-{{x}^{2}} \right) \right]'=-2x.f'\left( 3-{{x}^{2}} \right)>0\Leftrightarrow \) f’(3 – x2) trái dấu với x
Ta thấy chỉ có khoảng (–1;0) là x âm và 2 < 3 – x2 < 3 do đó f’(3 – x2) > 0 (theo đồ thị)
nên f(3 – x2) đồng biến trên (–1;0)
Chọn D
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.