Cho hàm số \(y=\dfrac{{{m}^{2}}x+1}{x-1}\). Xác định m để hàm số đạt giá trị nhỏ nhất bằng 4 trên đoạn \(\left[ -2;-1 \right]\).
Giải chi tiết:
\({y}'=\dfrac{-{{m}^{2}}-1}{{{(x-1)}^{2}}}=\dfrac{-({{m}^{2}}+1)}{{{(x-1)}^{2}}}<0\Rightarrow \) Hàm số nghịch biến (Là hàm mà y tăng thì x giảm, y giảm thì x tăng)
\( \Rightarrow \) Giá trị nhỏ nhất sẽ đạt x lớn nhất.
\( \Rightarrow \) Giá trị nhỏ nhất đạt tại \(x = - 1\)
\( \Leftrightarrow Min = y( - 1) = \dfrac{{ - {m^2} + 1}}{{ - 2}}\)
Mà theo đề bài \(Min = 4\) \( \Rightarrow \dfrac{{ - {m^2} + 1}}{{ - 2}} = 4 \Leftrightarrow - {m^2} + 1 = - 8 \Leftrightarrow {m^2} = 9 \Leftrightarrow m = \pm 3\)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.