Cho hàm số \(y = {x^4} - 2{x^2} + 2\). Khẳng định nào sau đây là khẳng định đúng?
Giải chi tiết:
\(y = {x^4} - 2{x^2} + 2 \Rightarrow y' = 4{x^3} - 4x\)
\(y' = 0 \Leftrightarrow 4{x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1\end{array} \right.\)
Bảng xét dấu y’:

\( \Rightarrow \) Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) là khẳng định đúng.
Chọn: A
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.