Cho hàm số \(y = - {x^3} + 3{x^2} + 2\) có đồ thị (C). Phương trình tiếp tuyến của (C) mà có hệ số góc lớn nhất là:
Giải chi tiết:
Gọi \(M\left( {{x}_{0}};{{y}_{0}} \right)\) là một điểm thuộc đồ thị hàm số (C). Khi đó hệ số góc của (C) tại M là: \(k=y'\left( {{x}_{0}} \right)\)
Để k lớn nhất thì \(y'\left( {{x}_{0}} \right)\) lớn nhất.
Ta có: \(y'=-3{{x}^{2}}+6x=-3\left( {{x}^{2}}-2x+1 \right)+3=-3{{\left( x-1 \right)}^{2}}+3\ge 3\)
\(\Rightarrow Max\,y'=3\Leftrightarrow x-1=0\Leftrightarrow x=1\Rightarrow M\left( 1;\,\,4 \right).\)
Phương trình tiếp tuyến của (C) tại M là: \(y=3\left( x-1 \right)+4=3x+1.\)
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.