Cho hàm số \(y = \ln \left( {x + \sqrt {{x^2} + 1} } \right) \). Mệnh đề nào sau đây đúng?
Giải chi tiết:
\(\begin{array}{l} + y' = \dfrac{{\left( {x + \sqrt {{x^2} + 1} } \right)'}}{{x + \sqrt {{x^2} + 1} }} = \dfrac{{1 + \dfrac{x}{{\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }} = \dfrac{{\dfrac{{\sqrt {{x^2} + 1} + x}}{{\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }} = \dfrac{1}{{\sqrt {{x^2} + 1} }}\\ \Rightarrow y'' = \dfrac{{ - 1}}{{{x^2} + 1}}.\dfrac{x}{{\sqrt {{x^2} + 1} }}\end{array}\)
+ Xét đáp án C: \(y'' + x.{\left( {y'} \right)^3} = \dfrac{{ - 1}}{{{x^2} + 1}}.\dfrac{x}{{\sqrt {{x^2} + 1} }} + x.{\left( {\dfrac{1}{{\sqrt {{x^2} + 1} }}} \right)^3}\)
\( = \dfrac{{ - x}}{{\left( {{x^2} + 1} \right)\sqrt {{x^2} + 1} }} + \dfrac{x}{{\left( {{x^2} + 1} \right)\sqrt {{x^2} + 1} }} = 0\) (Đpcm).
Chọn C
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.