Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn [-2 ; 2] và có đồ thị như hình vẽ bên. Số nghiệm thực của phương trình \(3f\left( x \right) - 4 = 0\) trên đoạn \(\left[ { - 2;2} \right]\) là

Giải chi tiết:
Ta có : \(3f\left( x \right) - 4 = 0 \Leftrightarrow f\left( x \right) = \dfrac{4}{3}\)
Ta có \(1 < \frac{4}{3} < 2\) nên dựa vào đồ thị hàm số suy ra được phương trình có 3 nghiệm phân biệt.
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.