Cho hàm số \(y = f\left( x \right)\) có đồ thị hàm số như hình bên. Phương trình \(f\left( x \right) = 1\) có bao nhiêu nghiệm thực phân biệt nhỏ hơn 2?
Giải chi tiết:
Số nghiệm của phương trình \(f\left( x \right) = 1\) là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = 1.\)
Dựa vào đồ thị hàm số ta thấy đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 3 điểm phân biệt trong đó có hai điểm có hoành độ nhỏ hơn 2.
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.