Cho hàm số \(y = f \left( x \right) \) có đạo hàm \(f' \left( x \right) = {x^2} \left( {x - 1} \right){ \left( {x + 2} \right)^3} \left( {2 - x} \right) \, \, \forall x \in \mathbb{R} \). Số điểm cực trị của hàm số đã cho bằng:
Giải chi tiết:
Xét phương trình \(f'\left( x \right) = 0 \Leftrightarrow {x^2}\left( {x - 1} \right){\left( {x + 2} \right)^3}\left( {2 - x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 2\\x = 2\end{array} \right.\).
Hàm số không đạt cực trị tại điểm \(x = 0\) vì đó là nghiệm bội hai của phương trình \(f'\left( x \right) = 0\). Vậy hàm số đã cho có 3 điểm cực trị.
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.