Cho hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + \left( {4m - 3} \right)x + 2017\). Tìm giá trị lớn nhất của tham số thực \(m\) để hàm số đã cho đồng biến trên \(\mathbb{R}\).
Giải chi tiết:
Tập xác định \({\rm{D}} = \mathbb{R}\).
Đạo hàm \(y' = {x^2} - 2mx + 4m - 3\).
Để hàm số đồng biến trên \(\mathbb{R}\)thì \(y' \ge 0;\,\forall x \in \mathbb{R}\) (\(y' = 0\) có hữu hạn nghiệm)
\(\left\{ \begin{array}{l}1 > 0\left( {luon\,\,dung} \right)\\\Delta ' = {m^2} - 4m + 3 \le 0\end{array} \right. \Leftrightarrow 1 \le m \le 3\) .
Suy ra giá trị lớn nhất của tham số \(m\) thỏa mãn yêu cầu bài toán là \(m = 3\)
Chọn: B
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.