Cho hàm số \(y=\sqrt{{{x}^{2}}-3x}\). Khẳng định nào sau đây là đúng?
Giải chi tiết:
Điều kiện xác định \({x^2} - 3x \ge 0 \Rightarrow \left[ \begin{array}{l}x \le 0\\x \ge 3\end{array} \right.\)
Ta có \(y' = \dfrac{{2x - 3}}{{2\sqrt {{x^2} - 3x} }} = 0 \Rightarrow x = \dfrac{3}{2}\)
Vì \(x = \dfrac{3}{2} \notin \left( { - \infty ;0} \right] \cup \left[ {3; + \infty } \right) \Rightarrow \) Loại \(x = \dfrac{3}{2} \Rightarrow \) Hàm số không có cực trị.
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.