Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\left( {a \ne 0} \right)\) có đồ thị như hình vẽ bên dưới.
Giải chi tiết:
Ta có: \(y' = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}.\)
Dựa vào đồ thị hàm số ta thấy đồ thị hàm số có đường tiệm cận đứng nằm phía bên trái của trục \(Oy \Rightarrow x = - \frac{d}{c} < 0 \Rightarrow dc > 0.\)
Đường tiệm cận ngang của đồ thị hàm số nằm phía dưới trục \(Ox \Rightarrow y = \frac{a}{c} < 0 \Leftrightarrow ac < 0 \Rightarrow ad < 0.\)
Ta thấy hàm số nghịch biến trên từng khoảng xác định \( \Rightarrow y' = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}} < 0 \Leftrightarrow ad - bc < 0 \Leftrightarrow ad < bc.\)
Lại có đồ thị hàm số cắt \(Oy\) tại điểm có tung độ \({y_0} > 0 \Rightarrow \frac{b}{d} > 0 \Leftrightarrow bd > 0.\)
Xét hàm số: \(y = a{x^3} + b{x^2} + cx + d \Rightarrow y' = 3a{x^2} + 2bx + c.\)
\( \Rightarrow y' = 0 \Leftrightarrow 3a{x^2} + 2bx + c = 0\;\;\;\left( * \right)\)
Ta có \(ac < 0 \Rightarrow \left( * \right)\) có hai nghiệm phân biệt trái dấu.
\( \Rightarrow \) đồ thị hàm số có hai điểm cực trị trái dấu.
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: =
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.