[LỜI GIẢI] Cho hàm số f(x)= căn x^2-x. Tập nghiệm S của bất phương trình f^'(x)le f(x) là: - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hàm số f(x)= căn x^2-x. Tập nghiệm S của bất phương trình f^'(x)le f(x) là:

Cho hàm số f(x)= căn x^2-x. Tập nghiệm S của bất phương trình f^'(x)le f(x) là:

Câu hỏi

Nhận biết

Cho hàm số \(f(x)=\sqrt{{{x}^{2}}-x}.\) Tập nghiệm S của bất phương trình \({{f}^{'}}(x)\le f(x)\) là:


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Phương pháp: Tính f’(x) sau đó giải bất phương trình.

Cách giải

TXĐ:\(D = \left( { - \infty ;0} \right] \cup \left[ {1; + \infty } \right)\)

Ta có

 \(f'\left( x \right) = \frac{{2x - 1}}{{2\sqrt {{x^2} - x} }}\)

\(f'\left( x \right) \le f\left( x \right) \Leftrightarrow \frac{{2x - 1}}{{2\sqrt {{x^2} - x} }} \le \sqrt {{x^2} - x} \)

\(DK:\,x \in \left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)\)

\(\begin{array}{l} \Leftrightarrow \frac{{2x - 1}}{{2\sqrt {{x^2} - x} }} - \sqrt {{x^2} - x} \le 0\\ \Leftrightarrow \frac{{2x - 1 - 2\left( {{x^2} - x} \right)}}{{2\sqrt {{x^2} - x} }} \le 0\\ \Leftrightarrow 2x - 1 - 2\left( {{x^2} - x} \right) \le 0\\ \Leftrightarrow - 2{x^2} + 4x - 1 \le 0\\ \Leftrightarrow x \in \left( { - \infty ;\frac{{2 - \sqrt 2 }}{2}} \right] \cup \left[ {\frac{{2 + \sqrt 2 }}{2}; + \infty } \right)\end{array}\)

Kết hợp điều kiện ta có:\(x \in \left( { - \infty ;0} \right) \cup \left[ {\frac{{2 + \sqrt 2 }}{2}; + \infty } \right)\)

Chọn A.

 

Ý kiến của bạn