Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x\left( {x - 1} \right){\left( {x + 2} \right)^3};\,\forall x \in \mathbb{R}.\) Số điểm cực trị của hàm số đã cho là:
Giải chi tiết:
Ta có \(f'\left( x \right) = 0 \Leftrightarrow x\left( {x - 1} \right){\left( {x + 2} \right)^3} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 2\end{array} \right.\) và các nghiệm này đều là nghiệm bội bậc lẻ nên hàm số đã cho có ba điểm cực trị.
CHỌN A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.