Cho hai tích phân \(\int\limits_{ - 2}^5 {f\left( x \right)dx} = 8\) và \(\int\limits_5^{ - 2} {g\left( x \right)dx} = 3\). Tính \(I = \int\limits_{ - 2}^5 {\left[ {f\left( x \right) - 4g\left( x \right) - 1} \right]dx} \) ?
Giải chi tiết:
\(I = \int\limits_{ - 2}^5 {\left[ {f\left( x \right) - 4g\left( x \right) - 1} \right]dx} \)
\(= \int\limits_{ - 2}^5 {f\left( x \right)dx} - 4\int\limits_{ - 2}^5 {g\left( x \right)dx} - \int\limits_{ - 2}^5 {dx} \)
\( = 8 - 4.\left( { - 3} \right) - \left. x \right|_{ - 2}^5 = 13\).
Chọn A.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.