Cho hai hình trụ có bán kính đường tròn đáy lần lượt là \({R_1},{R_2}\) và chiều cao lần lượt là \(h_1,h_2.\) Nếu hai hình trụ có cùng thể tích và \(\frac{h_1}{h_2}=\frac{9}{4} \) thì tỉ số \(\frac{{{R_1}}}{{{R_2}}}\) bằng
Giải chi tiết:
Thể tích hai khối trụ lần lượt là \({V_1} = \pi R_1^2{h_1},\,\,{V_2} = \pi R_2^2{h_2}\).
Ta có: \({V_1} = {V_2} \Leftrightarrow \frac{{\pi R_1^2{h_1}}}{{\pi R_2^2{h_2}}} = 1 \Leftrightarrow {\left( {\frac{{{R_1}}}{{{R_2}}}} \right)^2}\frac{{{h_1}}}{{{h_2}}} = 1 \Leftrightarrow {\left( {\frac{{{R_1}}}{{{R_2}}}} \right)^2}.\frac{9}{4} = 1 \Leftrightarrow {\left( {\frac{{{R_1}}}{{{R_2}}}} \right)^2} = \frac{4}{9} \Leftrightarrow \frac{{{R_1}}}{{{R_2}}} = \frac{2}{3}\).
Chọn B.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.