[LỜI GIẢI] Cho hai đường thẳng d1 và d2 song song nhau. Trên d1 có 10 điểm phân b - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho hai đường thẳng d1 và d2 song song nhau. Trên d1 có 10 điểm phân b

Cho hai đường thẳng d1 và d2 song song nhau. Trên d1 có 10 điểm phân b

Câu hỏi

Nhận biết

Cho hai đường thẳng d1d2 song song nhau. Trên d1 có 10 điểm phân biệt, trên d2 có 8 điểm phân biệt. Số tam giác có ba đỉnh được lấy từ 18 điểm đã cho là:


Đáp án đúng: A

Lời giải của Tự Học 365

Giải chi tiết:

Để tạo thành 1 tam giác ta phải chọn được 1 điểm thuộc đường thẳng này và 2 điểm còn lại thuộc

đường thẳng kia.

TH1: Lấy 1 điểm thuộc \({d_1}\) và 2 điểm thuộc \({d_2}\)

Số cách chọn là: \(C_{10}^1.C_8^2 = 280\)

TH2: Lấy 2 điểm thuộc \({d_1}\) và 1 điểm thuộc \({d_2}\)

Số cách chọn là: \(C_{10}^2.C_8^1 = 360\)

Vậy có tất cả \(280 + 360 = 640\) tam giác được tạo thành.

Chọn A.

Ý kiến của bạn