Cho hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 nam, 5 nữa ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác xuất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ.
Giải chi tiết:
Xếp ngẫu nhiên 10 học sinh vào 10 ghế cho \(10!\) cách xếp \( \Rightarrow n\left( \Omega \right) = 10!\).
Gọi A là biến cố: “ mỗi học sinh nam đều ngồi đối diện với một học sinh nữ”.
+) Xếp học sinh nam thứ nhất vào 1 trong 10 vị trí cho 10 cách xếp.
Chọn 1 trong 5 bạn nữ xếp ngồi đối diện với bạn nam thứ nhất có 5 cách xếp.
+) Xếp bạn nam thứ 2 vào 1 trong 8 vị trí còn lại có 8 cách xếp.
Chọn 1 trong 4 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ hai có 4 cách xếp.
+) Xếp bạn nam thứ 3 vào 1 trong 6 vị trí còn lại có 6 cách xếp.
Chọn 1 trong 3 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ ba có 3 cách xếp.
+) Xếp bạn nam thứ 4 vào 1 trong 4 vị trí còn lại có 4 cách xếp.
Chọn 1 trong 2 bạn nữ còn lại xếp ngồi đối diện với bạn nam thứ tư có 2 cách xếp.
+) Xếp bạn nam thứ 5 vào 1 trong 2 vị trí còn lại có 2 cách xếp.
Xếp 1 bạn nữ còn lại vào vị trí cuối cùng có 1 cách xếp.
\( \Rightarrow n\left( A \right) = 10.5.8.4.6.3.4.2.2.1 = 460800\).
Vậy \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \dfrac{{460800}}{{10!}} = \dfrac{8}{{63}}\).
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.