[LỜI GIẢI] Cho f( x ) mà hàm số y = f'( x ) có bảng biến thiên như hình bên. Tất cả các giá trị của tham số m đ - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho f( x ) mà hàm số y = f'( x ) có bảng biến thiên như hình bên. Tất cả các giá trị của tham số m đ

Cho f( x ) mà hàm số y = f'( x ) có bảng biến thiên như hình bên. Tất cả các giá trị của tham số m đ

Câu hỏi

Nhận biết

Cho \(f\left( x \right)\) mà hàm số \(y = f'\left( x \right)\) có bảng biến thiên như hình bên. Tất cả các giá trị của tham số \(m\) để bất phương trình \(m + {x^2} < f\left( x \right) + \frac{1}{3}{x^3}\) nghiệm đúng với mọi \(x \in \left( {0;3} \right)\) là


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

\(m + {x^2} < f\left( x \right) + \frac{1}{3}{x^3}\) nghiệm đúng \(\forall x \in \left( {0;3} \right)\)

\( \Leftrightarrow g\left( x \right) = f\left( x \right) + \frac{1}{3}{x^3} - {x^2} > m\) nghiệm đúng  \(\forall x \in \left( {0;3} \right) \Rightarrow m \le \mathop {\min }\limits_{\left[ {0;3} \right]} g\left( x \right)\).

Ta có \(g'\left( x \right) = f'\left( x \right) + {x^2} - 2x\).

Dựa vào BBT ta thấy :

\(1 < f'\left( x \right) \le 3\,\,\forall x \in \left( {0;3} \right)\) và \(\forall x \in \left( {0;3} \right) \Rightarrow  - 1 \le {x^2} - 2x \le 3\)

\( \Rightarrow g'\left( x \right) \ge 0\,\,\forall x \in \left( {0;3} \right) \Rightarrow \) Hàm số đồng biến trên \(\left( {0;3} \right)\).

\( \Rightarrow \mathop {\min }\limits_{\left[ {0;3} \right]} g\left( x \right) = g\left( 0 \right) = f\left( 0 \right) \Leftrightarrow m \le f\left( 0 \right)\)

Chọn B.

Ý kiến của bạn