[LỜI GIẢI] Cho F( x ) = dx^2ln xa - dx^2b là một nguyên hàm của hàm số f( x ) = x.ln x (ab là hằng số). Tính - Tự Học 365
LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY
XEM CHI TIẾT

Cho F( x ) = dx^2ln xa - dx^2b là một nguyên hàm của hàm số f( x ) = x.ln x (ab là hằng số). Tính

Cho F( x ) = dx^2ln xa - dx^2b là một nguyên hàm của hàm số f( x ) = x.ln x (ab là hằng số). Tính

Câu hỏi

Nhận biết

Cho \(F\left( x \right) = \dfrac{{{x^2}\ln x}}{a} - \dfrac{{{x^2}}}{b}\) là một nguyên hàm của hàm số \(f\left( x \right) = x.\ln x\) (\(a,b\) là hằng số). Tính \({a^2} - b\)?


Đáp án đúng: B

Lời giải của Tự Học 365

Giải chi tiết:

TXĐ:\(D = \left( {0; + \infty } \right)\)

\(F\left( x \right) = \dfrac{{{x^2}\ln x}}{a} - \dfrac{{{x^2}}}{b}\)là nguyên hàm của hàm số \(f\left( x \right) = x\ln x\) nên\(F'\left( x \right) = f\left( x \right)\).

Ta có: \(F\left( x \right) = \dfrac{{{x^2}\ln x}}{a} - \dfrac{{{x^2}}}{b} = \dfrac{1}{a}\left( {{x^2}\ln x} \right) - \dfrac{1}{b}{x^2}.\)

\(\begin{array}{l} \Rightarrow F'\left( x \right) = \dfrac{1}{a}\left( {2x\ln x + {x^2}.\dfrac{1}{x}} \right) - \dfrac{{2x}}{b}\\ \Leftrightarrow F'\left( x \right) = \dfrac{1}{a}.2x\ln x + \dfrac{x}{a} - \dfrac{{2x}}{b} = \dfrac{2}{a}.x\ln x + \left( {\dfrac{1}{a} - \dfrac{2}{b}} \right)x\end{array}\)

Do \(F'\left( x \right) = f\left( x \right)\) nên đồng nhất hệ số ta có: \(\left\{ \begin{array}{l}\dfrac{2}{a} = 1\\\dfrac{1}{a} - \dfrac{2}{b} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 4\end{array} \right.\) .

Vậy \({a^2} - b = {2^2} - 4 = 0.\)

Chọn B.

Ý kiến của bạn