Cho đường thẳng \(\left( d \right)\) nằm trên mặt phẳng \(\left( P \right):x + y + z - 3 = 0\) và vuông góc với đường thẳng \(\left( {d'} \right):\,\,\dfrac{{x - 1}}{1} = \dfrac{y}{3} = \dfrac{z}{{ - 1}}\). Tìm một vecto chỉ phương của đường thẳng \(\left( d \right)\).
Giải chi tiết:
Gọi \(\overrightarrow u \) là vecto chỉ phương của đường thẳng \(\left( d \right)\).
Gọi \(\overrightarrow n \left( {1;1;1} \right)\) là 1 VTPT của mặt phẳng \(\left( P \right)\), \(\overrightarrow {u'} \left( {1;3; - 1} \right)\) là 1 VTCP của đường thẳng \(\left( {d'} \right)\).
Ta có: \(\left\{ \begin{array}{l}d \subset \left( P \right)\\d \bot d'\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow u \bot \overrightarrow n \\\overrightarrow u \bot \overrightarrow {u'} \end{array} \right. \Rightarrow \overrightarrow u = \left[ {\overrightarrow n ;\overrightarrow {u'} } \right] = \left( { - 4;2;2} \right)\).
Vì \(\left( { - 4;2;2} \right)\) và \(\left( { - 2;1;1} \right)\) là 2 vectơ cùng phương nên \(\left( { - 2;1;1} \right)\) cũng là 1 VTCP của đường thẳng \(d\).
Chọn D.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.