Cho \(a\) và \(b\) và hai số thực dương thỏa mãn \(a{b^3} = 8.\) Giá trị của \({\log _2}a + 3{\log _2}b\) bằng
Giải chi tiết:
\({\log _2}a + 3{\log _2}b = {\log _2}a + {\log _2}{b^3} = {\log _2}\left( {a{b^3}} \right) = {\log _2}8 = 3.\)
Chọn D
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.