Cắt khối cầu tâm \(I\), bán kính \(R = 5\) bởi một mặt phẳng \(\left( P \right)\) cách \(I\) một khoảng bằng \(4\), diện tích thiết diện là
Giải chi tiết:

Mặt phẳng \(\left( P \right)\) cắt mặt cầu theo giao tuyến là đường tròn tâm \(H\) bán kính \(r\)
Theo giả thiết ta có \(ON = 5;OH = 4 \Rightarrow H{N^2} = O{N^2} - O{H^2} = {5^2} - {4^2} = {3^2}\) \( \Rightarrow HN = 3 \Rightarrow r = 3\)
Diện tích thiết diện là \(S = \pi {r^2} = \pi {.3^2} = 9\pi \)
Chọn C.
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.