Đồ thị hàm số \(y=\frac{x+1}{\sqrt{{{x}^{2}}-1}}\) có tất cả bao nhiêu tiệm cận đứng và tiệm cận ngang?
Giải chi tiết:
Ta có \(\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{x+1}{\sqrt{{{x}^{2}}-1}}=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{x\left( 1+\frac{1}{x} \right)}{\left| x \right|\sqrt{1-\frac{1}{{{x}^{2}}}}}=\underset{x\,\to \,+\,\infty }{\mathop{\lim }}\,\frac{1+\frac{1}{x}}{\sqrt{1-\frac{1}{{{x}^{2}}}}}=1\Rightarrow \,\,y=1\) là TCN.
Và \(\underset{x\,\to \,-\,\infty }{\mathop{\lim }}\,y=\underset{x\,\to \,-\,\infty }{\mathop{\lim }}\,\frac{x+1}{\sqrt{{{x}^{2}}-1}}=\underset{x\,\to \,-\,\infty }{\mathop{\lim }}\,\frac{x\left( 1+\frac{1}{x} \right)}{\left| x \right|\sqrt{1-\frac{1}{{{x}^{2}}}}}=\underset{x\,\to \,-\,\infty }{\mathop{\lim }}\,\frac{1+\frac{1}{x}}{-\,\sqrt{1-\frac{1}{{{x}^{2}}}}}=-\,1\Rightarrow \,\,y=-\,1\) là TCN.
Lại có \(\underset{x\,\to \,1}{\mathop{\lim }}\,y=\underset{x\,\to \,1}{\mathop{\lim }}\,\frac{x+1}{\sqrt{{{x}^{2}}-1}}=\infty \)\(\Rightarrow \)\(x=1\) là TCĐ.
Và \(\underset{x\,\to \,-\,1}{\mathop{\lim }}\,y=\underset{x\,\to \,-\,1}{\mathop{\lim }}\,\frac{x+1}{\sqrt{{{x}^{2}}-1}}=0\Rightarrow \,\,x=-\,1\) không là TCĐ.
Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.
Chọn A
Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d:
=
=
và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.